Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email
نویسندگان
چکیده
This paper describes a novel method by which a dialogue agent can learn to choose an optimal dialogue strategy. While it is widely agreed that dialogue strategies should be formulated in terms of communicative intentions, there has been little work on automatically optimizing an agent's choices when there are multiple ways to realize a communicative intention. Our method is based on a combination of learning algorithms and empirical evaluation techniques. The learning component of our method is based on algorithms for reinforcement learning, such as dynamic programming and Q-learning. The empirical component uses the PARADISE evaluation framework (Walker et al., 1997) to identify the important peribrmance factors and to provide the performance function needed by the learning algorithm. We illustrate our method with a dialogue agent named ELVIS (EmaiL Voice Interactive System), that supports access to email over the phone. We show how ELVIS can learn to choose among alternate strategies for agent initiative, for reading messages, and for summarizing email folders.
منابع مشابه
On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملAn Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email
This paper describes a novel method by which a spoken dialogue system can learn to choose an optimal dialogue strategy from its experience interacting with human users. The method is based on a combination of reinforcement learning and performance modeling of spoken dialogue systems. The reinforcement learning component applies Q-learning (Watkins, 1989), while the performance modeling componen...
متن کاملHierarchical Reinforcement Learning for Spoken Dialogue Systems
This thesis focuses on the problem of scalable optimization of dialogue behaviour in speech-based conversational systems using reinforcement learning. Most previous investigations in dialogue strategy learning have proposed flat reinforcement learning methods, which are more suitable for small-scale spoken dialogue systems. This research formulates the problem in terms of Semi-Markov Decision P...
متن کاملThe Effect of Oral Dialogue Journals on Iranian EFL Learners'Communicative Competence
This study investigated the effect of oral dialogue journals on communicative competence of Iranian EFL learners. Participants of this study were 80 students of two Payam-e-Noor Universities who were proved to be homogenous in the communicative competence based on TSE (Test of Spoken English) interview. The participants of one of these universities were considered as the experimental group. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998